Homework 4, due 9/23

- 1. Let $f : \mathbf{C} \to \mathbf{C}$ be holomorphic, and not constant. Show that $f(\mathbf{C})$ is dense in \mathbf{C} .
- 2. Let f be a meromorphic function on \mathbf{C} .
 - (i) Suppose that there exist k, C > 0 such that $|f(z)| \leq C|z|^k$ for all |z| > C. Prove that f is a rational function, i.e. there are polynomials p, q such that f = p/q.
 - (ii) Suppose that the function g(w) = f(1/w) is also meromorphic on **C**. Prove that f is a rational function.
- 3. Find the Laurent series of the function

$$f(z) = \frac{1}{1 - z^2},$$

around the point z = -1. Where does the series converge?

4. Let $f: \mathbf{C} \setminus \{0\} \to \mathbf{C}$ be the meromorphic function defined by

$$f(z) = \frac{1 - \cos z}{z^5}.$$

Find $\operatorname{ord}_0(f)$.

- 5. Prove that the function $f(z) = \sin(1/z)$ has an essential singularity at z = 0.
- 6. Let $f : D(0,1) \to \mathbf{C}$ be holomorphic such that f(0) = 0. Show that there is an integer m, an r > 0, and a holomorphic $g : D(0,r) \to \mathbf{C}$ with $g(0) \neq 0$ such that for $z \in D(0,r)$ we have

$$f(z) = \left[zg(z) \right]^m.$$

7. Consider the improper integral

$$I = \lim_{R \to \infty} \int_0^R e^{ix^2} \, dx$$

on the positive real axis. Prove that

$$I = \lim_{R \to \infty} \int_{\gamma_R} e^{iz^2} \, dz,$$

where γ_R is the line segment $\gamma_R(t) = te^{i\theta}$ for any $\theta \in (0, \pi/2)$, with $t \in [0, R]$. Deduce that

$$I = e^{\pi i/4} \int_0^\infty e^{-x^2} \, dx = \frac{\sqrt{\pi}}{2} e^{\pi i/4} \, dx$$